The performance of a contact-aided compliant mechanism that functions as a cycle doubler is studied in this paper via nonlinear finite element simulations. The topology of this mechanism was obtained from a systematic synthesis procedure and is reported elsewhere. Although the design was obtained for a quasi-static specification, the kinematic characteristics of the design suggest its ability to function adequately at low to moderate frequencies. The scalability of the design and its single-piece construction enable fabrication using different materials at various length scales. Therefore, it is possible to choose a scale and material combination that yields the frequency doubling action for various input frequencies. Explicit dynamic nonlinear finite element simulations are used to verify the functionality of the design at two different length scales: macro (device footprint of 289 sq. cm) corresponding to an input frequency of 20 Hz and meso (device footprint of a square of 14.3 sq. cm) corresponding to an input frequency of 1 kHz. Experiments on a macro scale prototype are used to validate the FE simulations for low frequencies.

This content is only available via PDF.
You do not currently have access to this content.