When the actuators are locked, parallel manipulators (PMs) become parallel structures, that are structures constituted by two rigid bodies (platform and base) connected by a number of kinematic chains (limbs) with only passive kinematic pairs. A set of PMs is the one collecting the manipulators (SP-2RS architectures) which become structures with one limb of type SP and two limbs of type RS (P, R and S stand for prismatic pair, revolute pair and spherical pair respectively). The analytic determination of the assembly modes of the SP-2RS structures (i.e. the solution in analytic form of the direct position analysis of the SP-2RS architectures) has not been presented in the literature yet. This paper presents the solution in analytic form of the DPA of the SP-2RS architectures. In particular, the closure equation system of a generic SP-2RS structure is written in the form of three non-linear equations in three unknowns. The solution of the non-linear system is reduced to the determination of the roots of a sixteenth-degree univariate polynomial equation plus a simple back substitution procedure. The proposed solution algorithm is applied to a real case. The result of this study is that the solutions of the direct position analysis of all the SP-2RS architectures are at most sixteen and can be analytically determined through the proposed algorithm.

This content is only available via PDF.
You do not currently have access to this content.