In a recent study, the authors presented a systematic method for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more of the mechanism joints. In this paper, the method is applied to the design of a linkage mechanism with an integrated cam mechanism for the purpose of eliminating the high harmonic component of the output link motion. The mechanism may be synthesized using well-developed linkage mechanism synthesis techniques for the intended application. Based on this method, a cam mechanism is synthesized for a prescribed output link motion while limiting the output motion to a simple harmonic motion with the frequency of its constant input velocity. The mechanism is constructed and tested. In mechanisms with relatively rigid links, the primary source of high harmonics in the output motion is the nonlinearity of the kinematics of their closed-loop chains. With the present method, a selected range or ranges of high harmonic motions generated due to such nonlinearities may be eliminated by integrating appropriately designed cams. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure, is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with increased precision.

This content is only available via PDF.
You do not currently have access to this content.