A squeeze mode MR fluid damper used for rotor vibration control is designed and manufactured, and the unbalance response properties and control method of a single-disk flexible rotor system supported by the damper are studied experimentally. It is found from the study that the magnetic pull force can decrease both the first critical speed and the critical amplitude; the oil film reaction force can decrease the amplitude at the undamped critical speeds, but increase the amplitude in a speed range between two undamped critical speeds. For the rotor system supported by a journal bearing and an MR fluid damper, it is possible to appear oil film instability as the increasing of the control current. The damper may have the best effect to make the vibration minimize within the range of all working speed by using on-off control method. The research show that the squeeze mode MR fluid damper has the advantages such as simple structure, clearly effectiveness, quick response, etc., and this kind of damper has a promising potential future in vibration control of flexible rotor systems.

This content is only available via PDF.
You do not currently have access to this content.