Whenever a tuned-mass damper is attached to a primary system, there is potential for utilization of motion of the absorber body in more than one degree of freedom relative to the primary system. In this paper, we propose that more than one mode of vibration of an absorber body relative to a primary system be tuned to a single natural frequency of the primary system. We cast the problem of optimizing the multi-degree-of-freedom connection between the absorber body and primary structure as a decentralized control problem, and develop optimization algorithms based on the H2 and H-infinity norms to minimize the response to random and harmonic excitations, respectively. We find that a two-DOF absorber can attain better performance than the optimal SDOF absorber, even for the case where the rotary inertia of the absorber tends to be zero. With properly chosen connection locations, the two-DOF absorber can achieve better vibration suppression than two separate absorbers of optimized mass distribution. We also find that a two-DOF absorber with negative dampers in some of the connections to the primary system can obtain much better performance than absorbers with only positive dampers.
Skip Nav Destination
ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
September 2–6, 2003
Chicago, Illinois, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
0-7918-3703-3
PROCEEDINGS PAPER
The Multi-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation Available to Purchase
Lei Zuo,
Lei Zuo
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Samir A. Nayfeh
Samir A. Nayfeh
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Lei Zuo
Massachusetts Institute of Technology, Cambridge, MA
Samir A. Nayfeh
Massachusetts Institute of Technology, Cambridge, MA
Paper No:
DETC2003/VIB-48550, pp. 2051-2061; 11 pages
Published Online:
June 23, 2008
Citation
Zuo, L, & Nayfeh, SA. "The Multi-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation." Proceedings of the ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C. Chicago, Illinois, USA. September 2–6, 2003. pp. 2051-2061. ASME. https://doi.org/10.1115/DETC2003/VIB-48550
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
J. Vib. Acoust (February,2006)
Graphical Design Methodology of Multi-Degrees-of-Freedom Tuned Mass Damper for Suppressing Multiple Modes
J. Vib. Acoust (February,2021)
Eddy Current-Based Vibration Suppression for Finish Machining of Assembly Interfaces of Large Aircraft Vertical Tail
J. Manuf. Sci. Eng (July,2019)
Related Chapters
An Adaptive Fuzzy Control for a Multi-Degree-of-Freedom System
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Smart Semi-Active Control of Floor-Isolated Structures
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Stability and Range
Design and Analysis of Centrifugal Compressors