This study proposes the dynamic model of a deep groove ball bearing with six degrees of freedom. The model includes descriptions of non-linear Hertzian contact deformation and elastohydrodynamic fluid film. The geometry, material properties and diametral clearance of the bearing are given as the input to the proposed model. The bearing force and torque components are calculated from the relative displacements and velocities between bearing rings. Distributed defects such as the waviness of the inner and outer ring, and localized defects, such as inner and outer ring defects, are taken into consideration in the proposed model. The effect of the diametral clearance of the bearing on the natural frequencies and vibration response of the rotor bearing system is studied. The diametral clearance is found to have a significant effect on the level of vibration as well as on the natural frequencies. Low-order waviness, also known as out-of-roundness, is found to generate vibration at frequencies of the waviness order multiplied by the rotation speed. Localized defects in the inner and outer ring are found to generate vibrations at bearing defect frequencies. The simulation results are in line with the analytical and experimental results available in literature. The proposed ball bearing model could be used in the general multibody or rotor dynamics computer code as an interference element between the rotor and the housing.

This content is only available via PDF.
You do not currently have access to this content.