The goal of this research is to obtain the optimum design of a new interbody fusion implant for use in lumbar spine fixation. A new minimally invasive surgical technique for interbody fusion is currently in development. The procedure makes use of an interbody implant that is inserted between two vertebral bodies. The implant is packed with bone graft material that fuses the motion segment. The implant must be capable of retaining bone graft and supporting spinal loads while fusion occurs. Finite element-based optimization techniques are used to drive the design. The optimization process is performed in two stages: topology optimization and then shape optimization. The different load conditions analyzed include: flexion, extension, and lateral bending.

This content is only available via PDF.
You do not currently have access to this content.