In this work, we investigate the geometry and position kinematics of planar parallel manipulators composed of three GPR serial sub-chains, where G denotes a rolling contact, or geared joint, P denotes a prismatic joint, and R denotes a revolute joint. The rolling contact joints provide a passive one degree-of-freedom relative motion between the base and the prismatic links. It is shown, both theoretically and numerically, that when all the G-joints have equal circular contact profiles, there are at most 48 real forward kinematic solutions when the P joints are actuated. The solution procedure is general and can be used to predict and solve for the kinematics solutions of 3-GPR manipulators with any combination of rational contact ratios.

This content is only available via PDF.
You do not currently have access to this content.