This article explores the effect that end-effector velocities have on a nonredundant robotic manipulator’s ability to accelerate its end-effector as well as to apply forces/moments to the environment at the end-effector. The velocity effects considered here are the Coriolis and Centrifugal forces, and the reduction of actuator torque with rotor velocity, as described by the speed-torque curve. Analysis of these effects is accomplished using optimization techniques, where the problem formulation consists of a cost function and constraints which are all purely quadratic forms, yielding a nonconvex problem. An analytical solution, based on the dialytic elimination technique, is developed which guarantees that the globally optimal solution can be found. The PUMA 560 manipulator is used as an example to illustrate this methodology.

This content is only available via PDF.
You do not currently have access to this content.