The solving strategy of GA-Based Multi-objective Fuzzy Matter-Element optimization is put forward in this paper to the kind of characters of product optimization such as multi-objective, fuzzy nature, indeterminacy, etc. Firstly, the model of multi-objective fuzzy matter-element optimization is created in this paper, and then it defines the matter-element weightily and changes solving multi-objective optimization into solving dependent function K(x) of the single objective optimization according to the optimization criterion. In addition, modified adaptive macro genetic algorithms (MAMGA) are adopted to solve the optimization problem. It emphatically modifies crossover and mutation operator. By the comparing MAMGA with adaptive macro genetic algorithms (AMGA), not only the optimization is a little better than the latter, but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). Lastly, three optimization methods, namely fuzzy matter-element optimization, linearity weighted method and fuzzy optimization, are also compared. It certifies that this method is feasible and valid.

This content is only available via PDF.
You do not currently have access to this content.