We present a framework to support design refinement during the virtual prototyping of microelectromechanical systems (MEMS). By instantiating MEMS components and connecting them to each other via ports, the designer can both configure complex systems and simulate them. We examine design refinement in the context of ease of use and representation of the virtual prototype. We propose the use of a common, formal grammar representation for the design entities in the virtual prototype—MEMS components, behavioral models and CAD models. We show that the formal grammar approach leads to easy creation of virtual prototypes. In this paper, we focus on ports—the fundamental building blocks of a virtual prototype. Ports mediate all interactions within and between aspects of the virtual prototype. For even moderately complex designs, there can be many interactions present. The representation and organization of all possible ports is important in the context of design refinement. We provide a set-theoretic formalism that defines the algebra of ports. We present a formal grammar for ports that represents a port as a set of attributes, and provide a design refinement mechanism that involves adding or modifying attributes in the port. We illustrate our framework with a MEMS example. We demonstrate that the MEMS designer can evaluate multiple design alternatives quickly and accurately with our framework.

This content is only available via PDF.
You do not currently have access to this content.