The Dual Cycle Elimination method was proposed by Mu¨ller-Hannemann for hexahedral mesh generation. The method begins with a surface quadrilateral mesh whose dual cycles have no self-intersections and, after the elimination of dual cycles, a hexahedral mesh is generated while tracing back the reverse order of eliminations and supplementing hexahedrons inside the object step by step. This paper presents the Characteristic Topology Method as a means to prescribe a quadrilateral surface mesh that can be initial data for further hexahedral mesh generation. The goal of this method is to stress the topology of the given surface and thus use construction of the loops within the algorithm. The surface is given in a nodal polygonal model and then decomposed into a triangle-quadrilateral model. Templates are used to determine the loops. Then due to some rules every loop is implemented by special additional Dual Cycles. The total mesh is the dual graph to the graph of dual cycles. The problem of self-intersections that may appear comes from Mu¨ller-Hannemann’s approach stated above and that is also implemented in this work as a sketch.

This content is only available via PDF.
You do not currently have access to this content.