A new integrated algorithm of structure determination and parameter estimation is proposed for nonlinear systems identification in this paper, which is based on the Householder Transformation (HT), Givens and Modified Gram-Schmidt (MGS) algorithms. While being used for the polynomial and rational NARMAX model identification, it can select the model terms while deleting the unimportant ones from the assumed full model, avoiding the storage difficulty as the CGS identification algorithm does which is proposed by Billings et. al., and is numerically more stable. Combining the H algorithm with the modified bidiagonalization least squares (MBLS) algorithm and the singular value decomposition (SVD) method respectively, two algorithms referred to as the MBLSHT and SVDHT ones are proposed for the polynomial and rational NARMAX model identification. They are all numerically more stable than the HT or Givens or MGS algorithm given in this paper, and the MBLSHT algorithm has the best performance. A higher precision for the parameter estimation can thus be obtained by them, as supported b simulation results.

This content is only available via PDF.
You do not currently have access to this content.