Abstract

The nonlinear dynamics of a circular spinning disc parametrically excited by noise of small intensity is investigated. The governing PDEs are reduced using a Galerkin reduction procedure to a two-DOF system of ODEs which, govern the transverse motion of the disc. The dynamics is simplified by exploiting the S1 invariance of the equations of motion of the reduced system and further, reduced by performing stochastic averaging. The resulting one-dimensional Markov diffusive process is studied in detail. The stationary probability density distribution is obtained by solving the Fokker-Planck equation along with the appropriate boundary conditions. The boundary behaviour is studied using an asymptotic approach. Some aspects of dynamical and phenomenological bifurcations of the stationary solution are also investigated. The scheme of things presented here can be applied in principle to a four-dimensional Hamiltonian system possessing one integral of motion in addition to the hamiltonian and having one fixed point.

This content is only available via PDF.
You do not currently have access to this content.