Abstract

This study focused on the application of active vibration control strategies for flexible moving structures which degrade into transient dynamic vibration problem. These control strategies are based primarily on modal control methods in which the flexible moving structures are controlled by reducing their dominant vibration modes. This work numerically investigated active control of the elastodynamic response of a four-bar mechanical system, using a piezoelectric actuator. A controller based on the modified independent modal space control theory was also utilized. This control theory produced overall excellent performance in terms of achieving the desired closed-loop structural damping. The merits of this technique include its ability to manage the spill-over effect, i.e. eliminate the magnitude of vibrations associated with uncontrolled modes, using only a few selected modes for control. This control was accomplished using a time sharing technique, which reduces the number of piezoelectric actuators required to control a large number of vibration modes. Furthermore, this algorithm implements a procedure for determining the optimal locations for the piezoelectric actuators.

The dynamics of a steel four-bar linkage was selected with a flexible coupler separated by six elements and one piezoelectric actuator was used in the numerical simulation. The optimal actuator position was located at the third element from the right to the left. Results in this study demonstrated that a highly desired the structural vibration damping could be achieved. This control technique can be applied to transient dynamic systems.

This content is only available via PDF.
You do not currently have access to this content.