Abstract
Damped vibration absorbers can significantly reduce the amplitude of resonant motion. Normally, these devices are used on machinery that is non-rotating (stationary). However, as this paper demonstrates both analytically and experimentally, a damped absorber can be successfully applied on rotating equipment, particularly on vertical machines, to attenuate lateral resonances. To illustrate this application, a detailed analysis of the damped absorber is presented, focusing on mass ratio, tuning frequency, amount of damping, and speed effects. It is shown that an optimum design can be obtained for use on a rotating machine that parametrically differs from a non-rotating application. Test data is also given illustrating the effectiveness of the concept and design methodology on an actual machine. Recommendations are provided to guide the application of this technology on other rotating machines.