Abstract

During the manufacture and transport of textile products, yarns are rotated at high speed and form balloons. The dynamic response of the balloon to varying rotation speed, boundary excitation, and disturbance forces governs the quality of the associated process. Resonance, in particular, can cause large tension variations that reduce product quality and may cause yarn breakage. In this paper, the natural frequencies and mode shapes of a single loop balloon are calculated to predict resonance. The three dimensional nonlinear equations of motion are simplified via small steady state displacement (sag) and vibration assumptions. Axial vibration is assumed to propagate instantaneously or in a quasistatic manner. Galerkin’s method is used to calculate the mode shapes and natural frequencies of the linearized equations. Experimental measurements of the steady state balloon shape and the first two natural frequencies and mode shapes are compared with theoretical predictions.

This content is only available via PDF.
You do not currently have access to this content.