Abstract

This paper presents a method for assembly evaluation. The method uses two evaluation criteria, robustness and variation analysis, and is supported by a software tool developed by the authors. The robustness evaluation aims at detecting design and assembly solutions that are sensitive to variation and may cause problems during production. Using this method in early product and process design phases helps to find more robust concepts, resulting in shorter production start-up time and better precision.

The method’s use is exemplified in a concept study of the assembly process of the door to the body of a (fictitious) jeep. The study shows that the proposed method can be used to obtain an objective comparison between different concepts. This comparison includes both general robustness and the expected variation in the critical dimensions. The results can be used, together with economical and practical aspects, to determine which concept is best suited for the assembly process.

The software used is implemented in the MS Windows environment and has an JGES interface that enables the user to import CAD geometry from an arbitrary CAD system. It can perform different types of robustness evaluations as well as traditional variation analyses.

This content is only available via PDF.
You do not currently have access to this content.