Abstract

An implicit numerical integration approach, based on generalized coordinate partitioning of the descriptor form of the differential-algebraic equations of motion of multibody dynamics, is presented. This approach is illustrated for simulation of stiff mechanical systems using the well known Newmark integration method from structural dynamics. Second order Newmark integration formulas are used to define independent generalized coordinates and their first time derivative as functions of independent accelerations. The latter are determined as the solution of discretized equations obtained using the descriptor form of the equations of motion. Dependent variables in the formulation, including Lagrange multipliers, are determined to satisfy all the kinematic and kinetic equations of multibody dynamics. The approach is illustrated by solving the constrained equations of motion for mechanical systems that exhibit stiff behavior. Results show that the approach is robust and has the capability to integrate differential-algebraic equations of motion for stiff multibody dynamic systems.

This content is only available via PDF.
You do not currently have access to this content.