Abstract
Trajectory synthesis for robot manipulators with redundant kinematic degrees-of-freedom has been studied by numerous investigators. Redundant manipulators are of interest since the redundant degrees-of-freedom can be used to improve the local and global kinematic and dynamic performance of a system. As a robot manipulator is forced to track a given trajectory, the required actuating torques (forces) may excite the natural modes of vibration of the system. Noting that manipulators with revolute joints have nonlinear dynamics, high harmonic excitation torques are generally generated even though such harmonics have been eliminated from the synthesized trajectories and filtered from the drive inputs. In this paper, a redundancy resolution method is developed based on the Trajectory Pattern Method (TPM) to synthesize trajectories such that the actuating torques required to realize them do not contain higher harmonic components with significant amplitudes. With such trajectories, a robot manipulator can operate at higher speeds and achieve higher tracking accuracy with suppressed residual vibration. As an example, optimal trajectories are synthesized for point to point motions of a plane 3R manipulator.