Abstract

A Genetic Algorithm (GA) based approach for solution of optimal control design of flexible structures is presented in this paper. The method for modeling flexible structures with distributed parameters as reduced-order models with lumped parameters, which has been developed previously, is employed. Due to some restrictions on controller design it is necessary to make a reduced-order model of the structure. Once the model is established the design of flexible structures is considered as a feedback search procedure where a new solution is assigned some fitness value for the GA and the algorithm iterates till some satisfactory design solution is achieved. We propose a pole assignment method to determine the evaluation (fitness) function to be used by the GA to find optimal damping ratios in passive elements. This paper demonstrates the first results of a genetic algorithm approach to solution of the vibration control problem for practical control applications to flexible tower-like structures.

This content is only available via PDF.
You do not currently have access to this content.