Abstract

This paper deals with roller chain drives applied in combustion engines. In order to find characteristics for an optimal design, all components of a chain drive are taken into account. For a detailed analysis of the chain strand vibrations and the contact configurations each chain link, sprocket and guide is treated as a separate body. A nonlinear force element describes the joint forces, including elasticity, damping, backlash and oil-displacement. To determine real contact forces between a link and a sprocket or a guide, the exact contour and the mutual dependence of the contacts are considered. The impact of one link may influence the other links in such a manner that their contact configuration may change. In the mechanical model these contacts are represented by unilateral constraints. Applying the formulation of the linear complementarities including additional inequality conditions, the determination of a valid contact configuration after a change in the system structure is simplified.

This content is only available via PDF.
You do not currently have access to this content.