Abstract

Electrorheological (ER) fluids are known to exhibit damping and stiffness properties which are highly dependent on the induced electrical field strength within the ER medium. Incorporation of ER fluid within a structural member then provides a means of stiffness and damping variation of the member. A structural member with embedded ER fluid is considered. Equations governing the axial and transverse motions of the member are reduced to a system of linear ordinary differential equations with time-varying coefficients. Application of the multiple time scales method results in amplitude-frequency relations. A control method is considered in which the effect of embedded ER fluid damping modulation using a simple harmonic excitation voltage on the parametric stability boundaries of the member is examined. Results indicate that the parametric stability boundaries can change effecting various modulation amplitudes and frequencies.

This content is only available via PDF.
You do not currently have access to this content.