Abstract

Brake squeal is caused by friction-induced vibration of brake systems. It may take place due to several possible mechanisms. The inverse variation of friction coefficient with relative sliding speed, also called negative μ-v slope, is one of them. Although it has been demonstrated in many articles that negative μ-v slope can cause unstable vibration for systems with a single degree of freedom (d.o.f.), its effects on multi-d.o.f. brake systems are not yet well understood. Since almost all types of friction materials for automotive brakes exhibit negative μ-v slope under certain conditions, it is important to clarify its role in brake squeal.

The current study incorporates the negative μ-v slope friction law into a Finite element model for disc brake systems. The rotor and pads are modeled by beam elements, and the caliper is represented by a rigid body with two degrees of freedom. The effects of negative μ-v slope on the vibration stability of a brake system are studied along with several parameters including friction level, lining compression modulus, and steelback thickness.

This content is only available via PDF.
You do not currently have access to this content.