Abstract
This paper examines the development of a networked simulation system. The Automated Robotic Manipulation (ARM) simulator is a central part of the network. This simulation tool currently assists with research and education into automated assembly. Robots, fixtures, conveyors, and parts create an automated assembly cell which is used to test advanced manufacturing software. ARM animates models of these physical components and enhances them with additional forms of three-dimensional graphical visualization. The feasibility of automated assembly can rapidly be assessed from the visual content presented by the simulator. Input formats for ARM are flexible enough to support a wide range of assembly cells and activities. Files and network transmissions customize the simulator to a particular assembly cell and its activities. The emerging assembly data protocol promotes the development of a truly integrated manufacturing system. A graphical interface complete with multiple views assists assembly cell layout and activity review, and networked operations significantly expand its role to areas such as interactive robot control and assembly preview.