Abstract
Structural synthesis of kinematic chains leans heavily on indirect methods, most of them based on Graph Theory, mainly because reliable isomorphism tests are not available. Recently however, the first and third authors have established the Secondary Hamming String of a kinematic chain as an excellent indicator of its isomorphism. In the present paper this Hamming String method was applied with slight modifications for synthesizing on a PC-386, distinct kinematic chains with given number of links and family description. The computer program, written in Pascal, generated both the six-bar and all 16 eight-bar chains as well as one sample family (2008) of ten-bar chains, verifying previously established results. Hence this paper presents a direct, quick and reliable method to synthesize planar simple-jointed chains, open or closed, with single- or multi-degree of freedom, containing any number of links. A spin-off of this paper is a simple, concise and unambiguous notation for representing a chain.