Abstract

To achieve superior product and process designs with “typical” engineering students requires careful attention to the design process that is taught and the teaching methods to be followed. The Integrated Product and Process Design (or Capstone) program at BYU has applied both. The Capstone program has been in operation for four years, with over 300 students having been through the program, and over 60 projects sponsored by industry.

The design process taught in Capstone starts with a rapid cycle through to preliminary concept selection. The process is then repeated, starting with the development of a functional specification, which is followed by formalized concept generation and selection methods, layout and detailed part design using solid modelers, experimental and analytical methods for answering design questions, simultaneous part and manufacturing process design, prototype, and production sample. This design process includes a high degree of concurrent involvement from each of the disciplines on the project team.

Non-traditional teaching methods that have proven useful in the class include the use of an industrial paradigm for the educational experience, the use of faculty coaches to mentor the student teams, the use of projects sponsored by industry with regular feedback from the industrial customer, just-in-time education so that students can see immediate application of what is taught, the use of skits and role-playing to teach interpersonal skills, and specific activities that help in the production of project deliverables.

The use of this design process and these teaching methods has led to successful design education. Students, faculty, and industrial customers have all been pleased with the success of the Capstone program in producing superior design engineers.

This content is only available via PDF.
You do not currently have access to this content.