Abstract
This paper studies a transfer function formulation for general one-dimensional, non-uniformly distributed systems subject to arbitrary boundary conditions and external disturbances. The purpose is to provide an useful alternative for modeling and analysis of distributed parameter systems. In the development, the system equations of the non-uniform system are cast into a state space form in the Laplace transform domain. The system response and distributed transfer functions are derived in term of the fundamental matrix of the state space equation. Two approximate methods for evaluating the fundamental matrix are proposed. With the transfer function formulation, various dynamics and control problems for the non-uniformly distributed system can be conveniently addressed. The transfer function analysis is also applied to constrained/combined non-uniformly distributed systems.