Abstract

Free and forced localized periodic motions in an infinite nonlinear periodic lattice are analytically investigated. The lattice consists of weakly coupled identical masses, each connected to the ground by a nonlinear stiffness. In order to study the localized motions of the discrete system a continuoum approximation is assumed, and the ordinary differential equations of motion are replaced by a single nonlinear partial differential equation. The time-periodic solutions of this equation are then obtained by an averaging method, and their stability is examined using an analytic linearized method. It is shown that localized periodic motions of the lattice correspond to standing solitary solutions of the partial differential equation of the continuous approximation. For the free lattice, localized free motions occur when the coupling stiffnesses forces are much smaller than the nonlinear effects of the grounding stiffnesses. Moreover, these free localized motions are detected in the perfectly periodic nonlinear lattice, i.e., even in the absence of structural disorder (a feature which is an essential prerequisite for linear mode localization). When harmonic forcing is applied to the chain, localized, non-localized, and chaotic motions occur, depending on the spatial distribution and the magnitude of the applied loads. A variety of spatially distributed harmonic loads and analytic expressions for the resulting localized motions of the chain are derived.

This content is only available via PDF.
You do not currently have access to this content.