The framework of an engineering creep-fatigue durability model has been adapted for use in estimating the radial static burst pressure and cyclic low-cycle fatigue macro-crack initiation resistance of continuous fiber reinforced (CFR) metal matrix composite (MMC) rings for application at 800 °F. Rings of circumfrentially wrapped SCS6/Ti-15-3 were manufactured by Textron Specialty Metals and burst tested by Pratt & Whitney as a part of a cooperative program with the NASA Lewis Research Center. Fatigue tests have as yet to be performed. The engineering model is based on a 3-D elasto-plastic micromechanics analysis of the tensile-loaded composite architecture. Use is made of the rule of mixtures, strain compatibility, equilibrium, and the stress-strain relationships of the constituents. Knowledge is required of the mechanical and fatigue properties of the matrix and fibers and how the presence of each affects the sharing of imposed stresses and strains. The model addresses specific issues such as residual fabrication stresses, inelastic deformation within the ductile matrix, multiaxial constraint imposed on the matrix, cyclic relaxation of both residual and applied mean stresses in the matrix, fatigue micro-crack initiation and propagation in the matrix, and tensile fracture of both the ductile matrix and the brittle fibers. In the current application of the model, the specific issues were empirically calibrated through use of tensile and tension-tension fatigue coupons that had been subjected to essentially identical loading as the rings.

This content is only available via PDF.
You do not currently have access to this content.