Abstract

This paper presents an interactive engineering environment for dextrous workspace analysis of manipulators. The environment contains a mechanical system modeling tool, an automatic differentiation package, and numerical solvers that map one-dimensional and two-dimensional solution sets of nonlinear parametrized kinematic constraint equations. Row-rank deficiency of constraint sub-Jacobian matrices is used as a necessary condition for characterizing the boundaries of the workspaces and dextrous workspaces of manipulators. A cursor driven animation capability, developed in an interactive graphics environment allows the user to retrieve system configurations by dragging the cursor along solution branches. An animation of the assembled configuration along that solution branch is then displayed. Thus, a better understanding of the kinematic behavior of mechanical systems that limits their dexterity can be obtained. A construction backhoe mechanical system is used to demonstrate the capability of the method developed.

This content is only available via PDF.
You do not currently have access to this content.