Abstract
The development of a “light striping” (structured light) based three-dimensional vision system for automatic surface sensing is presented. The three-dimensional world-point reconstruction process and system modeling methodology involves homogeneous coordinate transformations applied in two independent stages; the video imaging stage using three-dimensional perspective transformations, and the mechanical scanning stage, using three-dimensional affine transformations. Concatenation of the two independent matrix models leads to a robust four-by-four matrix system model. The independent treatment of the two-dimensional imaging process from the three-dimensional modeling process, has reduced the number of unknown internal and external geometrical parameters. The reconstructed sectional contours (light stripes) are automatically and in real-time registered with respect to a common world coordinate system in a format compatible with B-spline surface approximation. The reconstruction process is demonstrated by measuring the surface of a 19.5-ft long by 2 feet beam rowing shell. A detailed statistical accuracy and precision analysis shows an average error, 0.2 percent (0.002), of an object’s largest dimension within the the camera’s field-of-view. System sensitivity analysis reveals a nonlinear increase for angles between the normals of the image and laser planes higher than 45 degrees.