Abstract
A compliant mechanism is one which gains all or part of its mobility from the relative flexibility of its members rather than from rigid-body joints only. Compliant mechanisms offer clear advantages, such as need for fewer parts, less wear, noise and backlash due to clearances, when compared to rigid-body mechanisms performing similar functions. This important field is expected to undergo significant growth as materials with superior properties are developed. In the development of compliant mechanisms, the establishment of nomenclature and classification is of primary importance. This paper discusses common representations, i.e. names and diagrams, for a compliant mechanism. Names and diagrams will be shown to be similar because they represent “abstractions” of the same mechanism. The concept of “levels of abstraction” is introduced, and common levels of abstraction are identified. The relevance of this concept to the naming of mechanisms is shown by applying it to both rigid-body and compliant mechanism examples. Nomenclature is proposed for several of the common levels of abstraction, and issues involved in naming mechanisms are discussed. Finally, a discussion of synthesis types is presented, as are the advantages, disadvantages, and issues involved in the synthesis of a compliant mechanism.