Abstract

The involute function ε = tanϕ – ϕ or ε = invϕ, and the inverse involute function ϕ = inv−1(ε) arise in the tooth geometry calculations of involute gears, involute splines, and involute serrations. In this paper, the explicit series solutions of the inverse involute function are derived by perturbation techniques in the ranges of |ε| < 1.8, 1.8 < |ε| < 5, and |ε| > 5. These explicit solutions are compared with the exact solutions, and the expressions for estimated errors are also developed. Of particular interest in the applications are the simple expansion ϕ = inv−1(ε) = (3ε)1/3 – 2ε/5 which gives the angle ϕ (< 45°) with error less than 1.0% in the range of ε < 0.215, and the economized asymptotic series expansion ϕ = inv−1 (ε) = 1.440859ε1/3 – 0.3660584ε which gives ϕ with error less than 0.17% in the range of ε < 0.215. The four, seven, and nine term series solutions of ϕ = inv−1 (ε) are shown to have error less than 0.0018%, 4.89 * 10−6%, and 2.01 * 10−7% in the range of ε < 0.215, respectively. The computation of the series solution of the inverse involute function can be easily performed by using a pocket calculator, which should lead to its practical applications in the design and analysis of involute gears, splines, and serrations.

This content is only available via PDF.
You do not currently have access to this content.