Abstract
Higher order Shear Defamation Plate Theories (HSDPT) are improved theories over Mindlin plate theory because their assumptions are closer to reality. However, they are seldom used in solving ordinary engineering works. This is due to the fact that mathematical formulations and computations are so lengthy that time and efforts required are close to solving a exact 3-D model.
For problems involving sharp stress variation, higher order theories are anticipated to give better results. The combination of HSDPT and Finite Element Modelings are especially attractive because a finite element modeling is much simpler.
The current research develops a finite element model on the higher order shear deformation theory. A plate vibration problem was solved. The plates contain square interior cutout. Stress distributions are much complicated than whole plates. Results of HSDPT are compared with FSDPT (First order Shear Deformation Plate Theories) and CPT (Classical Plate Theory).
Better accuracies are obtained by using the HSDPT.