The viscous heat generation in the lubricant film of a hydrodynamic journal bearing causes a rise in temperature of the fluid film. Considering the influence of the temperature variation along and across the film, the performance of a journal bearing is investigated under adiabatic conditions for different values of thermal conductivity of the lubricant. In this analysis, the temperature of the journal surface has been chosen to ensure that there is no net heat transfer from the lubricant The results show that the variation of temperature across the film affects bearing performance significantly and that an increase in lubricant thermal conductivity enhances bearing performance.

This content is only available via PDF.
You do not currently have access to this content.