A dynamic elastic large displacement response analysis of the bottom floor of a generic vehicle hull model subjected to empirically obtained coupled blast and impact loads has been conducted using three-dimensional (3-D) shell elements in the ADINA nonlinear dynamic finite element analysis code. For the impulse-dominated problem, the impact load is a square wave step function concentrated load while the blast loads from the detonation of an explosive are a series of distributed pressure loads approximated as triangular impulse loads with linear decay and varying arrival and duration times.

The 3-D numerical model has been generated using the PATRAN3 modeling code and converted to the ADINA finite element input data deck using the ADINA translator and careful inclusion of appropriate material properties as well as initial and boundary conditions. Monolithic single-layered four-noded quad shell elements were sufficient to model the bottom floor and the left- and right-horizontal and vertical sponsons as well as the lower front glacis.

Although several simplifying assumptions and approximations are made during the generation of the basic floor model, material properties, and the forcing functions, the investigation gives valuable insight into the response behavior of a generic hull bottom floor to externally applied coupled blast and impact loads and provides an inexpensive nondestructive method of evaluation of the structural integrity of modern vehicles subjected to spatially varying transient loads.

This content is only available via PDF.
You do not currently have access to this content.