An integrated structure and motion pattern specific design approach is proposed for optimal design of high speed and accuracy computer controlled machines including robots. The approach is based on the Trajectory Pattern Method (TPM). The current approach to the design of such machines is to assume that the machine will be required to perform more or less any arbitrary and often unrealistic tasks. This assumption nearly always leads to designs based on the worst operating conditions. The proposed trajectory pattern based design methodology presented in this paper stems from a fundamentally new design philosophy. The philosophy behind the proposed approach is that machines in general and ultra-high performance machines in particular must only be designed to perform a class or classes of motions effectively. And that trajectory patterns, i.e., classes of parametric trajectories, exist with which high speed motions can be synthesized with minimal ensuing vibration and control problems. In the proposed approach, given the kinematic structure of the machine, its kinematic and dynamic parameters are optimized simultaneously with the parameters that describe a selected trajectory pattern. The controller parameters may also be included as design variables. In the present study, the optimality criterion employed is based on minimizing the higher harmonic portion of the actuating forces (torques) required for performing the selected class(es) of motion patterns. Trajectories that do not demand high frequency actuating torque harmonics are desirable since they reduce vibration and control problems in high performance systems and reduce settling time. Examples of the application of the proposed approach are presented.

This content is only available via PDF.
You do not currently have access to this content.