Abstract
It is observed that calculating the wind pressures on structures involves more data retrieval from the ASCE standard than any subjective reasoning on the designer’s part. Once the initial design requirements are established, the procedure involved in the computation is straightforward. This paper discusses an approach to automate the process associated with wind pressure computation on one story and multi-story buildings using a data management strategy (implemented using the ORACLE database management system). In the prototype system developed herein, the designer supplies the design requirements in the form of the structure’s exposure type, its dimensions and the nature of occupancy of the structure. Using these requirements, the program retrieves the necessary standards data from an independently maintained database, and computes the wind pressures. The final output contains the wind pressures on the main wind force resisting system, and on the components and claddings, for wind blowing parallel and perpendicular to the ridge.
The knowledge encoded in the system was gained from ASCE codes, design guidelines and as a result of interviews with various experts and practitioners. Several information modeling methodologies such as the entity relationship model, IDEF 1X, etc. were employed in the system analysis and design phase of this project. The prototype is implemented on an IBM PC using the ORACLE DBMS and the ‘C’ programming language. Appendix A illustrates a sample run.