Skip Nav Destination
Proceedings Papers
In This Volume
Volume 3A: 50th Design Automation Conference (DAC)
Front Matter
50th Design Automation Conference (DAC)
Control Co-Design
Numerical Estimation of Bidirectional Plant-Control Design Coupling in Control Co-Design
IDETC-CIE 2024; V03AT03A002https://doi.org/10.1115/DETC2024-142636
Topics:
Design
,
Optimization
,
Space vehicles
Artificial Intelligence and Machine Learning for Challenging Real-World Problems in Design Automation
Transfer Learning in Multi-Objective Generative Design of Metamaterials
IDETC-CIE 2024; V03AT03A006https://doi.org/10.1115/DETC2024-142346
Topics:
Generative design
,
Metamaterials
,
Design
,
Stiffness
,
Genetic algorithms
,
Optimization
,
Physics
,
Reinforcement learning
Cooling-Guided Diffusion Model for Battery Cell Arrangement
IDETC-CIE 2024; V03AT03A009https://doi.org/10.1115/DETC2024-143373
Novel AI or ML Frameworks for Design or Systems Science
Data-Driven Design
Automated Sub-Feature Labeling Using Prompt-Based Pretrained Language Model
IDETC-CIE 2024; V03AT03A018https://doi.org/10.1115/DETC2024-142891
Topics:
Batteries
,
Product design
Inverse Design With Conditional Cascaded Diffusion Models
IDETC-CIE 2024; V03AT03A020https://doi.org/10.1115/DETC2024-143607
Topics:
Design
,
Diffusion (Physics)
,
Resolution (Optics)
,
Errors
,
Generative adversarial networks
,
Machine learning
,
Pipelines
,
Trains
Advancing Fluid-Based Thermal Management Systems Design: Leveraging Graph Neural Networks for Graph Regression and Efficient Enumeration Reduction
Saeid Bayat, Nastaran Shahmansouri, Satya RT Peddada, Alexander Tessier, Adrian Butscher, James T. Allison
IDETC-CIE 2024; V03AT03A021https://doi.org/10.1115/DETC2024-143660
Topics:
Design
,
Fluids
,
Graph neural networks
,
Optimal control
,
System architecture
,
Thermal management
Generative Design of Planar Four-Bar Motions Using Conditional Variational Autoencoder
IDETC-CIE 2024; V03AT03A022https://doi.org/10.1115/DETC2024-146347
Topics:
Algebra
,
Circuits
,
Dimensions
,
Errors
,
Filtration
,
Generative design
,
Kinematics
,
Linkages
,
Machine learning
,
Machinery
Design and Optimization of Energy Systems
Development of an Optimal Variable-Pitch Controller for Floating Axial-Flow Marine Hydrokinetic Turbines
Athul Krishna Sundarrajan, Thanh Toan Tran, Will Wiley, Hannah Ross, Daniel Zalkind, Daniel R. Herber
IDETC-CIE 2024; V03AT03A023https://doi.org/10.1115/DETC2024-141271
Topics:
Axial flow
,
Control equipment
,
Hydraulic turbines
,
Turbines
,
Control systems
,
Damage
,
Design
,
Engineers
,
Generators
,
Modeling
Real-Time Thermal Data Assimilation for Power Electronics at the Edge
IDETC-CIE 2024; V03AT03A024https://doi.org/10.1115/DETC2024-141697
Topics:
Digital twin
,
Electronics
,
Particle swarm optimization
,
Ships
,
Algorithms
,
Particulate matter
,
Sensors
,
Computation
,
Cycles
,
Edge computing
Optimizing Day-Ahead Market Scheduling: Policy Design for Renewable Energy Integration and Imbalance Cost Consideration
IDETC-CIE 2024; V03AT03A025https://doi.org/10.1115/DETC2024-143074
Topics:
Charging stations
,
Design
,
Renewable energy
,
Sales
,
Algorithms
,
Batteries
,
Buses
,
Computer simulation
,
Fuel cells
,
Photovoltaics
Adaptive Agent-Based Control for Lithium-Ion Batteries in Naval Microgrids
IDETC-CIE 2024; V03AT03A027https://doi.org/10.1115/DETC2024-143181
Topics:
Distributed power generation
,
Lithium-ion batteries
,
Microgrids
,
Storage
,
Batteries
,
Stress
,
Generators
,
Temperature
,
Lithium
,
Power grids
Integrating Cost, Reliability, and Renewable Energy for Robust Microgrid Design and Operations
IDETC-CIE 2024; V03AT03A029https://doi.org/10.1115/DETC2024-143774
Topics:
Design
,
Microgrids
,
Reliability
,
Renewable energy
,
Resilience
Data-Driven Modeling Adaptive Aerostructures
IDETC-CIE 2024; V03AT03A031https://doi.org/10.1115/DETC2024-145979
Topics:
Modeling
,
Wind energy
,
Turbines
,
Errors
,
Optimization
,
Artificial neural networks
,
Blades
,
Engineering simulation
,
Machinery
,
Particle swarm optimization
Design for Additive Manufacturing
Evolved Structures: Primification Using Load Lines
IDETC-CIE 2024; V03AT03A032https://doi.org/10.1115/DETC2024-131819
Topics:
Generative design
,
Stress
,
Geometry
,
Testing
,
Workflow
,
Finite element analysis
,
Carbon fibers
,
Engineers
,
Manufacturing
,
Shapes
A Graph Algorithm for the Design of Functionally Graded Alloy Components
IDETC-CIE 2024; V03AT03A033https://doi.org/10.1115/DETC2024-141977
Topics:
Algorithms
,
Alloys
,
Design
,
Metals
,
Additive manufacturing
,
Cracking (Materials)
,
Fracture (Process)
,
Geometry
,
Ocean engineering
,
Solidification
Design for Market Systems
Design for Resilience and Failure Recover
Recalibration of Neural Networks Using Transfer Learning for Streamflow Forecasting
IDETC-CIE 2024; V03AT03A038https://doi.org/10.1115/DETC2024-142765
Topics:
Artificial neural networks
,
Physics
,
Design
,
Climate change
,
Floods
,
Flow (Dynamics)
,
Machine learning
,
Modeling
,
Rivers
,
Simulation
Defining a Modelling Language to Support Functional Hazard Assessment
IDETC-CIE 2024; V03AT03A039https://doi.org/10.1115/DETC2024-143549
Topics:
Hazard analysis
,
Modeling
Requirements for Designing a Fail-Safe Defense Supply Network
IDETC-CIE 2024; V03AT03A042https://doi.org/10.1115/DETC2024-143747
Topics:
Defense industry
,
Design
A Framework to Support Co-Design Exploration of Manufacturing Supply Networks for Resilience
IDETC-CIE 2024; V03AT03A043https://doi.org/10.1115/DETC2024-146295
Topics:
Design
,
Manufacturing
,
Resilience