Although a number of power conversion applications have been identified or have even been developed (e.g., waste heat recovery) for supercritical carbon dioxide (S-CO2) cycles including fossil fuel combustors, concentrated solar power (i.e., solar power towers), and marine propulsion, the benefits of S-CO2 Brayton cycle power conversion are especially prominent for applications to nuclear power reactors. In particular, the S-CO2 Brayton cycle is well matched to the Sodium-Cooled Fast Reactor (SFR) nuclear power reactor system and offers significant benefits for SFRs. The recompression closed Brayton cycle is highly recuperated and wants to operate with an approximate optimal S-CO2 temperature rise in the sodium-to-CO2 heat exchangers of about 150 °C which is well matched to the sodium temperature rise through the core that is also about 150 °C. Use of the S-CO2 Brayton cycle eliminates sodium-water reactions and can reduce the nuclear power plant cost per unit electrical power. A conceptual design of an optimized S-CO2 Brayton cycle power converter and supporting systems has been developed for the Advanced Fast Reactor – 100 (AFR-100) 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR). The AFR-100 is under ongoing development at Argonne National Laboratory (ANL) to target emerging markets where a clean, secure, and stable source of electricity is required but a large-scale power plant cannot be accommodated. The S-CO2 Brayton cycle components and cycle conditions were optimized to minimize the power plant cost per unit electrical power (i.e., $/kWe). For a core outlet temperature of 550 °C and turbine inlet temperature of 517 °C, a cycle efficiency of 42.3 % is calculated that exceeds that obtained with a traditional superheated steam cycle by one percentage point or more. A normal shutdown heat removal system incorporating a pressurized pumped S-CO2 loop slightly above the critical pressure on each of the two intermediate sodium loops has been developed to remove heat from the reactor when the power converter is shut down. Three-dimensional layouts of S-CO2 Brayton cycle power converter and shutdown heat removal components and piping have been determined and three-dimensional CAD drawings prepared. The S-CO2 Brayton cycle power converter is found to have a small footprint reducing the space requirements for components and systems inside of both the turbine generator building and reactor building. The results continue to validate earlier notions about the benefits of S-CO2 Brayton cycle power conversion for SFRs including higher efficiency, improved economics, elimination of sodium-water reactions, load following, and smaller footprint.
Skip Nav Destination
ASME 2015 Nuclear Forum collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology
June 28–July 2, 2015
San Diego, California, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5686-4
PROCEEDINGS PAPER
A Supercritical CO2 Brayton Cycle Power Converter for a Sodium-Cooled Fast Reactor Small Modular Reactor
James J. Sienicki,
James J. Sienicki
Argonne National Laboratory, Argonne, IL
Search for other works by this author on:
Anton Moisseytsev,
Anton Moisseytsev
Argonne National Laboratory, Argonne, IL
Search for other works by this author on:
Lubomir Krajtl
Lubomir Krajtl
Argonne National Laboratory, Argonne, IL
Search for other works by this author on:
James J. Sienicki
Argonne National Laboratory, Argonne, IL
Anton Moisseytsev
Argonne National Laboratory, Argonne, IL
Lubomir Krajtl
Argonne National Laboratory, Argonne, IL
Paper No:
NUCLRF2015-49185, V001T01A004; 10 pages
Published Online:
October 27, 2015
Citation
Sienicki, JJ, Moisseytsev, A, & Krajtl, L. "A Supercritical CO2 Brayton Cycle Power Converter for a Sodium-Cooled Fast Reactor Small Modular Reactor." Proceedings of the ASME 2015 Nuclear Forum collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2015 Nuclear Forum. San Diego, California, USA. June 28–July 2, 2015. V001T01A004. ASME. https://doi.org/10.1115/NUCLRF2015-49185
Download citation file:
65
Views
Related Proceedings Papers
Current Status and Future Applications of Supercritical Pressures in Power Engineering
ICONE20-POWER2012
A Feasibility Study on Various Power-Conversion Cycles for a Sodium-Cooled Fast Reactor
ICONE20-POWER2012
Related Articles
Dry-Cooled Supercritical CO 2 Power for Advanced Nuclear
Reactors
J. Eng. Gas Turbines Power (January,2015)
Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System
J. Energy Resour. Technol (September,2021)
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO 2 Brayton Cycle Power Plant
J. Sol. Energy Eng (October,2019)
Related Chapters
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Threshold Functions
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
New Generation Reactors
Energy and Power Generation Handbook: Established and Emerging Technologies