Abstract
SuperCritical Water-cooled Reactors (SCWRs) represent potential improvements over traditional water-cooled reactors in many respects, including thermal efficiency. These reactors are still under development, however, thermalhydraulics data needed for their design are lacking. Experimentation is complex and costly. In spite of a large number of experiments in long bare tubes (pipes) cooled with SCW, developing SCWR concepts requires experimental data in bundle geometries cooled with SCW, which are usually shorter and will have smaller hydraulic-equivalent diameters.
As a first step, tests have been conducted by others on heat transfer in short, vertical bare tubes cooled with the upward flow of SCW. The objective of this work is to analyze that collected data with particular attention to the Deteriorated Heat Transfer (DHT) regime. The DHT regime is characterized by reduced Heat Transfer Coefficients (HTCs) and consequently increased wall temperatures. As such, it represents a hazard to the safe operation of a Nuclear Power Plant (NPP).
The results of this analysis indicate that DHT did occur in each of the tests analyzed, often seen as a gradual decrease in HTC along the heated length, but occasionally as a sharp “dip”. The DHT can occur along the heated length, when the bulk-fluid temperature is close to or within the pseudocritical region. The results also confirmed that the Dittus-Boelter correlation does not adequately predict HTCs within the pseudocritical region. Two other applied correlations (Gupta et al. and Mokry et al.) performed better, but neither was able to predict the occurrence of the DHT.
The results of this analysis will be of use to designers and developers of SCWRs, and can help to plan future experiments.