Nuclear technology, as a high quality, clean and reliable energy supply, is attracting broad interest from countries across the world. F321 austenitic stainless steel (F321SS) is widely utilized in key components of nuclear power plant due to its excellent corrosion resistance and high temperature mechanical properties. Irradiation can easily lead to the degradation behaviors of materials, such as irradiation hardening, irradiation embrittlement and high-temperature He embrittlement, etc. Understanding such degradation is important for predicting the evolution of material behavior under irradiation and extending the lifespan of existing nuclear reactors. Ion irradiation is most commonly used to model neutron-induced damage since the irradiation conditions (temperature, flux, spectrum, etc.) can be regulated more accurately and flexibly. In this paper, the Fe-ion irradiation experiments of F321SS at different temperatures and doses were carried out, and the nanoindentation experiments under different conditions were further conducted. Irradiation hardening is observed in all specimens and strongly depending on irradiation temperature and damage dose. The hardness after irradiating increases with doses and saturates for at least 1dpa under low temperature regimes (< 300°C). However, at higher temperature (450°C and 560°C), nano-hardness reaches the peak at ∼0.5dpa and then declines. Moreover, the hardness of all specimens has a similar trend with temperature, that is, it first increases, reaches the peak, and then decreases.

This content is only available via PDF.
You do not currently have access to this content.