Back-to-back pipe bends are widely adopted applications in many industries including nuclear sectors. Evaluation of their load bearing capability under complex cyclic loading is very important. Recently, a couple of research reported shakedown boundary of a 90° back-to-back pipe bends by adopting a conservative approach but no comprehensive post yield structural behaviors have been dealt with. In this research the concerning pipe bends subjected to cyclic opening in-plane (IP)/out-of-plane (OP) bending and steady internal pressures are analyzed to construct shakedown and ratchet limit boundary by means of the Linear Matching Method. Analyzed results present that the concerning pipe bends under out-of-plane bending has higher resistance to cyclic bending than under in-plane bending. In additions, the out-of-plane bending causes very small alternating plasticity areas, unlike the in-plane bending. Full cyclic incremental analyses known as step-by-step analysis are performed to verify the structural responses either side of each boundary and confirm correct responses. Parametric studies are carried out with respect to changes in geometry of the concerning pipe bends subjected to the same loading, and semi-empirical equations are derived from relationships of the reverse plasticity limit and the limit pressure with the bend characteristic. This paper offers broad understandings of structural responses of the 90° back-to-back pipe bends under the complex cyclic loading as well as providing key points to be considered for the life assessment of the piping system.
Skip Nav Destination
2018 26th International Conference on Nuclear Engineering
July 22–26, 2018
London, England
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5153-1
PROCEEDINGS PAPER
Cyclic Plasticity Behavior of 90° Back-to-Back Pipe Bends Under Cyclic Bending and Steady Pressure
Nak-Kyun Cho,
Nak-Kyun Cho
University of Strathclyde, Glasgow, UK
Search for other works by this author on:
Haofeng Chen
Haofeng Chen
University of Strathclyde, Glasgow, UK
Search for other works by this author on:
Nak-Kyun Cho
University of Strathclyde, Glasgow, UK
Haofeng Chen
University of Strathclyde, Glasgow, UK
Paper No:
ICONE26-82386, V009T16A082; 9 pages
Published Online:
October 24, 2018
Citation
Cho, N, & Chen, H. "Cyclic Plasticity Behavior of 90° Back-to-Back Pipe Bends Under Cyclic Bending and Steady Pressure." Proceedings of the 2018 26th International Conference on Nuclear Engineering. Volume 9: Student Paper Competition. London, England. July 22–26, 2018. V009T16A082. ASME. https://doi.org/10.1115/ICONE26-82386
Download citation file:
31
Views
Related Proceedings Papers
Related Articles
Investigating the Effects of Cyclic Thermo-Mechanical Loading on Cyclic Plastic Behavior of a Ninety-Degree Back-to-Back Pipe Bend System
J. Pressure Vessel Technol (April,2020)
Numerical Assessment of Elbow Element Response Under Internal Pressure
J. Pressure Vessel Technol (October,2021)
Minimum Stress Design of Nozzles in Pressure Vessel Heads
J. Pressure Vessel Technol (November,1988)
Related Chapters
Siphon Seals and Water Legs
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1
Nonmetallic Pressure Piping System Components Part A: Experience With Nonmetallic Materials in Structural/Pressure Boundary Applications
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Piping Design
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition