The plate type fuel element is widely used in advanced research reactors due to its excellent heat transfer performance, low fuel core temperature and large core power-to-volume ratio, etc. The fuel plate gap is generally 1 to 3 mm, and the aspect ratio is generally greater than 20, thus forming a typical large aspect ratio rectangular channel between adjacent fuel plates. In addition, in the actual research reactor, the distribution of power is uneven along the width of the channel due to the influence of the radiation target and fuel arrangement, which inevitably causes lateral migration and cross-mixing of the fluid. As a result, the flow and heat transfer characteristics may be significantly different from those in conventional narrow channels. At present, the experimental and theoretical research on the flow heat transfer characteristics in the rectangular channel are basically carried out under the condition of uniform heating. It is rarely reported that the flow and heat transfer characteristics in narrow rectangular channel with large aspect ratio under transverse non-uniform heating. Therefore, the numerical study of thermal-hydraulic characteristics in vertical narrow rectangular channel with large aspect ratio under transverse uneven heating is carried out in this study. The numerical calculation shows that the lateral power distribution has a significant effect on the temperature field distribution of the core coolant and the fuel plate, which suggests that the distribution of the lateral power of the plate fuel should be considered in the design and safety analysis of reactor cores.
Skip Nav Destination
2018 26th International Conference on Nuclear Engineering
July 22–26, 2018
London, England
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5153-1
PROCEEDINGS PAPER
Study on Thermal-Hydraulic Characteristics of Vertical Narrow Rectangular Channel With Large Aspect Ratio Under Transverse Uneven Heating
Rulei Sun,
Rulei Sun
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
Yichen Yang,
Yichen Yang
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
Dalin Zhang,
Dalin Zhang
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
Jiawei Bian,
Jiawei Bian
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
Suizheng Qiu,
Suizheng Qiu
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
G. H. Su
G. H. Su
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
Rulei Sun
Xi'an Jiaotong University, Xi'an, China
Yichen Yang
Xi'an Jiaotong University, Xi'an, China
Dalin Zhang
Xi'an Jiaotong University, Xi'an, China
Jiawei Bian
Xi'an Jiaotong University, Xi'an, China
Suizheng Qiu
Xi'an Jiaotong University, Xi'an, China
G. H. Su
Xi'an Jiaotong University, Xi'an, China
Paper No:
ICONE26-81757, V009T16A050; 5 pages
Published Online:
October 24, 2018
Citation
Sun, R, Yang, Y, Zhang, D, Bian, J, Qiu, S, & Su, GH. "Study on Thermal-Hydraulic Characteristics of Vertical Narrow Rectangular Channel With Large Aspect Ratio Under Transverse Uneven Heating." Proceedings of the 2018 26th International Conference on Nuclear Engineering. Volume 9: Student Paper Competition. London, England. July 22–26, 2018. V009T16A050. ASME. https://doi.org/10.1115/ICONE26-81757
Download citation file:
31
Views
Related Proceedings Papers
Related Articles
Effects of a Reacting Cross-Stream on Turbine Film Cooling
J. Eng. Gas Turbines Power (May,2010)
An Experimental Correlation for Combined Convection and Radiation Between Parallel Vertical Plates
J. Heat Transfer (October,2004)
Deterministic and Probabilistic Fracture Mechanics Analysis for Structural Integrity Assessment of Pressurized Water Reactor Pressure Vessel
J. Pressure Vessel Technol (June,2016)
Related Chapters
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
ASME Section VI: Recommended Rules for the Care and Operation of Heating Boilers
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 1 Sixth Edition
Adding Surface While Minimizing Downtime
Heat Exchanger Engineering Techniques