Knowledge of the heat transfer phenomenon under flow decay transient condition is important for the safety assessment of a very high temperature reactor (VHTR) during a loss of coolant accident. In this study, transient heat transfer from a horizontal cylinder to helium gas under exponentially decreasing flow rate condition was experimentally investigated. The experiment was conducted by using a forced convection heat transfer experimental apparatus. A flow control value with its control system was used to realize a flow decay condition. Helium gas was used as a coolant, and a platinum cylinder with a diameter of 1 mm was used as the test heater. A uniform heat generation rate was added to the cylinder by a power source. The cylinder temperature was maintained at an initial value under a definite initial flow rate of the helium gas. Subsequently, the flow rate of the helium gas began to exponentially decrease with different time constants ranging from 3 s to 15 s. The initial flow velocity ranged from 7 m/s to 10 m/s. The surface temperature, heat flux, and heat transfer coefficient were measured during the flow decay transient process under a wide range of experimental conditions such as heat generation rates and flow decay time constants. The results indicated that the temperature of the test heater exhibits a rapid increase during this process, and the increasing rate of the temperature is higher for a lower time constant. An increase in the heat generation rate leads to a higher increase in the surface temperature. Therefore, the heat generation rates of the fuel rods are high when a VHTR operates at high power, and it is more challenging to implement passive safety design to ensure the temperature limitation of the fuel rods during a loss-of-coolant accident. Moreover, the heat transfer coefficient relative to time during the flow rate decreasing process was also obtained. The transient heat transfer process during exponentially decreasing flow rate condition was examined based on the experimental data.

This content is only available via PDF.
You do not currently have access to this content.