Water chemistry plays an important part in maintaining corrosion resistance in water transport systems throughout nuclear power plants (NPP’s). Small changes in liquid chemistry such as pH, borate concentration, or build-up of crud in reactor cooling water can result in rapid degradation or damage to components and lead to unexpected failures. The Chemical and Volume Control System (CVCS) and Reactor Water Cleanup System (RWCU) are responsible for maintaining these parameters at appropriate levels, and so failure of either of these systems can result in unnecessary stresses on many other reactor systems due to resulting transients. While the major components of these systems all have sufficient redundancy to prevent major accidents, failure of components in these systems can result in failure of other redundant components and affect plant safety [1]. The CVCS and RWCU systems have experienced aging related degradations and failures in the past, and although they have not affected the system’s emergency functions, they have resulted in unnecessary actuation of related systems, and reactor shutdowns [1]. Reactor shutdowns can result in large changes in reactor coolant chemistry such as oxygen and borate concentration transients, and the build-up of corrosion products which can’t be as easily removed during periods of reactor shutdown [2].

In the following analysis of Component Operational Experience Degradation and Ageing Program (CODAP) experience data; causes, impacts, and preventative actions as recorded in CODAP are examined for degradation events which took place in the CVCS and RWCU, of PWRs and BWRs, respectively. The analysis will demonstrate the usefulness of CODAP in examining reactor component failure trends, as well as discuss insights on improvement for the program.

This content is only available via PDF.
You do not currently have access to this content.