Jet breakup and fragmentation are important phenomena to be well understood during a core-disruptive accident of sodium-cooled fast reactors. The three-dimensional two-phase lattice Boltzmann model developed previously by the authors is improved in numerical stability used to simulate the hydrodynamic process of melt jet breakup. Nonorthogonal central moments is successfully introduced into the model. Numerical simulations of FARO-TERMOS experiments demonstrate the enhancements in stability of the present model. The simulations with two types of grid resolutions show the effect of spatial resolution on the results.

This content is only available via PDF.
You do not currently have access to this content.