Two-phase flow is an important and common phenomenon in nuclear reactor systems, and the characteristics of two-phase flow such as heat transfer and pressure drop strongly depend on the radial distribution of void fraction. This paper is presenting the CFD simulation for void fraction radial distribution of mono- and poly-disperse air-water two phase flow using Euler-Euler two-fluid model. Interfacial forces including transverse forces such as lift, wall and turbulent dispersion forces are taken into account, Furthermore the bubble size distribution and bubble break-up and coalescence processes are taken into account in case of a poly-disperse flow by using the S-Gamma model. The sauter mean diameter and interfacial area concentration (IAC) distribution can also be obtained. The simulation results are compared to an experimental database of MT-LOOP test facility (FZD, Germany)[1].

This content is only available via PDF.
You do not currently have access to this content.