During a hypothesized severe accident, a containment building is designed to act as a final barrier to prevent release of fission products to the environment in Nuclear Power Plants (NPPs). However, in a bypass scenario of Steam Generator Tube Rupture (SGTR), radioactive nuclides are released to environment even if the containment is not ruptured. The radioactive nuclides are transported from primary to secondary systems through a broken steam generator tube during SGTR accident. Accordingly, the radioactive nuclides of the secondary system can be released to the environment through Main Steam Safety Valve (MSSV) or Atmospheric Dump Valve (ADV). Thus, thorough mitigation strategies are needed to prevent such unfiltered release of the radioactive nuclides during SGTR accidents. To mitigate the consequence of the SGTR accident, this study was conducted to devise In-Containment Relief Valve (ICRV) from steam generator to the free space in the containment building of the Optimized Power Reactor 1000 MWe (OPR1000). This study focuses on the conceptual development of the mitigation strategy and MELCOR code was used for the numerical simulation. The MELCOR input model of OPR1000 consists of 58 control volumes and 161 flow paths. Safety features such as Pressurizer Safety Relief Valve (PSRV), Safety Injection Tanks (SITs), and MSSV were modeled in the MELCOR model. To initiate the SGTR scenario, a flow path between secondary and primary sides of Steam Generator (SG) was modeled with a flow area of 4.49 × 10−4 m2. The safety features were assumed that a few passive systems such as PSRV, MSSV, and SIT, were available. Under this condition, the ICRV connecting the SG and the free space in the containment such as dome and Reactor Drain Tank (RDT) were modeled. Specifications of the ICRV such as length, flow area, and valve opening condition were assumed to similar to those of the MSSV. Using these paths, three cases were considered; a base case, a case of steam release to the containment dome (CNMT case), and a case of release to the RDT (RDT case). Simulation results show that in the base case released radionuclides to the environment. In the other cases, the radioactive nuclides were not released to the environment although the containment pressure increased more than the base case, which is lack of the ICRV. As a result, the ICRV prevents the radionuclides release to the environment during SGTR accidents. Further studies are needed to incorporate practical valve inputs, reactor type, and safety features to gain more feasibility.
Skip Nav Destination
2018 26th International Conference on Nuclear Engineering
July 22–26, 2018
London, England
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5151-7
PROCEEDINGS PAPER
Investigation on Fission Products Release Mitigated by In-Containment Relief Valve Under SGTR Accident Available to Purchase
Joongoo Jeon,
Joongoo Jeon
Hanyang University, Seoul, Korea
Search for other works by this author on:
Nam Kyung Kim,
Nam Kyung Kim
Hanyang University, Seoul, Korea
Search for other works by this author on:
Sung Joong Kim
Sung Joong Kim
Hanyang University, Seoul, Korea
Search for other works by this author on:
Taeseok Kim
Hanyang University, Seoul, Korea
Wonjun Choi
Hanyang University, Seoul, Korea
Joongoo Jeon
Hanyang University, Seoul, Korea
Nam Kyung Kim
Hanyang University, Seoul, Korea
Sung Joong Kim
Hanyang University, Seoul, Korea
Paper No:
ICONE26-82161, V007T11A012; 6 pages
Published Online:
October 24, 2018
Citation
Kim, T, Choi, W, Jeon, J, Kim, NK, & Kim, SJ. "Investigation on Fission Products Release Mitigated by In-Containment Relief Valve Under SGTR Accident." Proceedings of the 2018 26th International Conference on Nuclear Engineering. Volume 7: Decontamination and Decommissioning, Radiation Protection, and Waste Management; Mitigation Strategies for Beyond Design Basis Events. London, England. July 22–26, 2018. V007T11A012. ASME. https://doi.org/10.1115/ICONE26-82161
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Computational Fluid Dynamics Analysis and Structural Safety Assessment of a Mitigation Device to Minimize Consequence of a Containment Bypass Nuclear Accident
J. Pressure Vessel Technol (April,2021)
Dynamic Behavior of Transportation Pressure Relief Valves Under Simulated Fire Impingement Conditions
J. Pressure Vessel Technol (February,2000)
Analyses of Feedwater Trip With SBO Sequence of VVER1000 Reactor
ASME J of Nuclear Rad Sci (October,2016)
Related Chapters
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
ASME Section VI: Recommended Rules for the Care and Operation of Heating Boilers
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 1 Sixth Edition
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)